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Point Interactions from Flux Conservation 
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We show that the physical requirement of flux conservation can substitute for 
the usual matching conditions in point interactions. The study covers an arbitrary 
superposition of ~ and ~' potentials on the real line and can be easily applied to 
higher dimensions. Our procedure can be seen as a physical interpretation of the 
deficiency index of some symmetric, but not self-adjoint operators. 

1. Point interactions o f  the delta type have a long history in quantum 
physics (Albeverio et al., 1988). In this note we show that the conventional  
matching conditions for these potentials can be obtained easily by enforcing 
the conservat ion o f  the flux across the discontinuity. 

For a one-dimensional  quantum system with a point interaction at x = 
0, the continuity equation for the current j and the density p, namely 15 + 
div j = 0, becomes  

j _  ~ j ( x  < O) = j+ =-- j ( x  > O) (1) 

in a stationary state; the current is (h = 2m = 1) 

J = 2i----m (dd*V~ - t~Vt~*) ---> ~ (2) 

There are essentially f o u r  types of  solutions to (1) and (2). I f  the flux 
is zero, we can consider the point x = 0 as an infinite wall, and we have 
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two families of total-reflection solutions, labeled by a (constant) phase 
shift, namely 

~e  iL~ + eiC~e -ik't, x < 0 

~'~(x) = lo ' x > o 

(3) 
= So ,  x < 0 

~(x) I e -ik-r + eif3eik-~, x > 0 

Notice that for generic a, [3, neither ~(x) nor +'(x) vanishes at x = 0, but 
the flux does. 

2. For nonzero flux, we have another two-parameter family. Let us 
assume first 

+ ( 0 - )  = ~(0+)  (4) 

with perhaps discontinuous +'; from (1) and (2) 

disc tW(0) 
+(0) disc ~*'(0) = ~*(0) disc ~'(0) 

~(0) 
- real const = g 

(5) 

where disc f(0) - f ( 0 + )  - f ( 0 - ) .  
Equation (5) characterizes the g(x)-potential of strength g. In fact, for 

the scattering situation 

t~(X < O) = e ik'~ + b(k)e  -ig~, O(X > 0) = (1 + f ( k ) ) e  igr 

+(x < 0) = (1 + j~(k))e - '~,  t~(x > 0) = e -'z~ + /~(k)e 'g~ (6) 

we obtain from (4) and (5) the well known S-matrix (e.g., Gottfried, 1966, 
p. 5o) 

S(k)=(1 +f(k) [~(k) "~=(2~k g ) 2 i k l _ g  (7) 
b(k) 1 + .f(k)] 2ik 

The pole at k = -ig/2 represents a bound state (for g < 0) or an antibound 
state (for g > 0). 

3. The fourth family of solutions is obtained by imposing the alterna- 
tive conditions 

disc ~(0) = g~O'(0), disc ~'(0) = 0 (8) 

in which case the S-matrix becomes 

S(k) = -g~ik 2 - ig~k (9) 
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which is the scattering conventionally ascribed to the 8'(x)-potential (Seba, 
1986); it also supports a single bound state (for gl < 0) or antibound state 
(for gl > 0). 

Notice that the 8(x)-potential is blind to the odd wave, f ( k )  = b(k) 
8_(k) = 0, and that the 8'(x)-potential proceeds exclusively in the odd wave, 
f ( k )  = - b ( k )  ~ 8+(k) = 0. Here, 8=(k) are the even/odd-phase shifts of the 
one-dimensional partial waves (Eberly, 1965). 

4. Our analysis allows logically for a superposition of 8(x)- and 8'(x)- 
potentials which seem to have been so far overlooked in the literature. Namely, 
define qb(x) and ~(x)  by 

1 
• (x) = cos ~ ( x )  + -- sin o~q/(x) 

m (10) 

• (x) = - m  sin etq~(x) + cos atV(x)  

where m is a quantity with the dimensions of an inverse length. Then qb and 
can substitute by t~ and t~' in (2) provided m is real since 

det( cos ct +sin odm~ = 
\ - m  sin ot cos et ] I (11) 

Now we define the general problem by 

disc qb(0) = 0, disc ~(0)  = g~(0)  (12) 

and solve for b, f,  /~, and j~ of equation (6); the calculation is straightfor- 
ward, yielding 

2ik 
S(k) = g(cos a + (ik/m)sin o02 

X 

g(cos a - (ik/m)sin cx)2'~ 
2ik ) 

(13) 

which interpolates naturally between the 8(x)-potential, cos ct = 1, sin c~ = 
0, equation (7); and the ~'(x)-potential, cos ot = 0, sin ot = 1, equation (9) 
with g/m 2 = -gn.  

5. Some features of formula (13) are worth noting. 

a. f (k )  = j~(k),as demanded by time-reversal invariance (Faddeev, 1964); 
however, b(k) 4: b(k) except in the extreme cases ~ or ~'. 

b. ~k=0(x) = 0 except in the ~'(x) case, when ~k=0(x) = 1. 

2ik - g(cos2ot + (k2/m2)sin 2 or) 
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c. S is, of course, unitary; its spectrum determines the eigenphase shifts 

2ik + g(cos c~ + (k2/m2)sin 2 ~) 
exp 2iBl 2ik - g(cos 2 a + (k2/m2)sin 2 c0 ' exp 2ig2 1 (14) 

This result is worth stressing: our family of  interactions proceeds in a single 
partial wave, the "orthogonal" one is not affected by the potential. This is 
in consonance with the simplicity of the S-matrix, equation (13): potentials 
which produce a single-mode interaction have a particularly simple pole 
structure in the S-matrix. This includes the delta potential (only even waves), 
the delta prime (only odd waves), the "solitonic" potential V(x) = - I ( l  + 
I) sechZx, l = O, 1, 2 . . . .  (only forward scattering), and the one-dimensional 
Coulomb potential (only odd-wave interaction). 

d. For sin c~ 4= 0 [i.e., excluding the g(x) case], the two poles of S are 
given by 

k = i m  2 1 -+ 1 + ~-~ cos 2e~sin 2 ~  tgs in  2~  (15) 

so there is always a bound state and an antibound state, for any sign of g, 
in the mixed case 0 # = ~ 4: ~/2. We already remarked that in the pure cases 
(c~ = 0 or ~ = ~/2) there is only one pole, implying either a single bound 
or antibound state. 

e. The eigenvector of the zero-phase shift is readily seen to be 

(i(k/m)sin ot + cos ct / 
V =  \ ik sin ot _ m c o s o t ]  (16) 

and depends only on tan ct, say, not on g; in particular, at low energies V --~ 
(-~t), that is, the odd wave is not affected, corresponding to the pure B case; 
at high energies V = (]), characteristic of the ~'-potential, with no force in 
the even channel. This is a sensible result, because the scale dimension of 
the B(x) is l, but that of our ~' is 3 (when dim [momentum] = + 1). Note 
that the naive dimension of the ~' would be 2, not 3! 

f. The reasons to call the matching conditions (8) a ~'(x)-potential are 
obscure; in fact, for the B case one can derive conditions (4) and (5) by 
integrating the Schr/Sdinger equation across the discontinuity; this is not so 
for the ~'(x). 

Also, it is easy to show that a "regularized" B'(x)-potential 

g lim 1 {B(x + a) - ~(x)} (17) 
a --'-)0 a 

with renormalized coupling g leads to the conventional B(x) [not g'(x)!] 
potential (Seba, 1987). 
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The rationale to call conditions (8) a 8'(x)-potential is that, writing the 
SchrOdinger equation ~" + eO = gS'(x)tlA ~" is proportional to ~', hence ~ '  
to 8, and ~ to the step function. Hence, heuristically, d/' and ~'  are "continu- 
ous" at the singularity, but ~ makes a jump, i.e., conditions (8). Notice that 
the naive ~'(x) would have dimension +2, so it would be potentially scale 
invariant, whereas the ~' we are using has dimension three; in fact, no trace 
of scale invariance remains in the 8' S-matrix, equation (9). 

g. It is not difficult to extend these results to higher dimensions; we 
state only the d = 3 result (Albeverio et al., 1988). The analogue of equation 
(5) is now 

u'/ul o = const = - l / a  (18) 

where t~(r) = u(r)/r. Since u = A sin(r + ~0), the "coupling constant" 
determines the phase shift by 

k cot ~o = - 1/a (19) 

In this case, a is called the scattering length. The d = 2 case has been the 
subject of some recent papers and we refer the reader to them (Holstein, 
1993; Mead and Godines, 1991; Gosdzinsky and Tarrach, 199 t). 

6. The rigorous treatment of the contact potentials entails the theory of 
extensions of  symmetric, non-self-adjoint operators, which started with a 
paper of Berezin and Faddeev ( 1961). But self-adjointness of the Hamiltonian 
implies unitarity of the evolution operators, and also of the S-matrix, which 
in turn is guaranteed by flux conservation; so there is not much surprise that 
the families of extensions of the kinetic energy operator D = E -dZ/dx 2 
acting on R" - {0} would coincide with the families of matching conditions, 
which we have worked out in detail for the d = 1 case (Carreau, 1993). 
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